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Consistently employing the assumption of localness of wave-wave interactions in the 
wavenumber space, the Kolmogorov treatment of the energy cascade is applied to 
the case of wind-generated surface gravity waves. The effective number v of 
resonantly interacting wave harmonics is not limited to four but is found as a 
solution of a coupled system of equations expressing: (i) the dependence of the 
spectrum shape on the degree of the wave nonlinearity, and (ii) the continuity of the 
wave action flux through the spectrum given a continuous positive input from wind. 
The latter is specified in a Miles-type fashion, and a simple scaling relationship based 
on the concept of the turnover time is derived in place of the kinetic equation. The 
mathematical problem is reduced to an ordinary differential equation of first order. 
The exponent in the ‘power law’ for the spectral density of the wave potential energy 
and the effective number of resonantly interacting wave harmonics are found as 
functions of the wave frequency and of external factors of wind-wave interaction. 
The solution is close to the Zakharov-Filonenko spectrum at low frequencies and low 
wind input while approaching the Phillips spectrum at high frequencies and 
sufficiently high wind. 

1. Introduction 
Owing to an intrinsically small variance of the sea surface slope, problems of wave 

turbulence are successfully (and most naturally) treated by small-perturbation 
techniques. An important accomplishment is the kinetic equation derived in the 
approximation of four-wave interactions (Hasselmann ‘1962 ; Zakharov & Filonenko 
1966). Mathematical complexity of higher-order terms in practice confines per- 
turbation theories to accounting for only the first two terms of the interaction 
Hamiltonian, Hint = H ,  + H ,  + . . . (Zakharov 1984). Analysis of five-wave inter- 
actions (term H 3 )  requires extensive numerical effort (e.g. West et al. 1987), while the 
inclusion of H ,  into a statistical description of wave dynamics (the kinetic equation) 
has not even been attempted. 

The goal of the present work is to estimate effects of higher-order resonant 
wave-wave interactions on the high-frequency range of the wave spectrum using a 
scaling approach. The central idea is based on the Kolmogorov argument concerned 
with the cascade nature of the energy transfer down the spectrum and the 
assumption of localness of the energy exchange between individual Fourier 
components (Kolmogorov 1941). This idea was followed by, for example, Kraichnan 
(1972) and Frisch, Sulem & Nelkin (1978) who studied the fluid turbulence and by 
Zakharov & L’vov (1975), Kitaigorodskii (1983), Larraza (1987) and Larraza, 
Garrett & Putterman (1990) who exploited it in the analysis of purely inertial spectra 
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of surface gravity waves exchanging energy, action and momentum within resonant 
wave tetrads. For four-wave interactions the localness hypothesis can be validated 
by direct calculations (Zakharov 1984). The new element introduced in the present 
work is the step in which the effective number, v, of the resonantly interacting 
components is taken to be an unknown function of the problem. This number is then 
determined as a function of the external conditions, i.e. the spectral density of the 
energy input, q(k) .  Although this approach obviates many obstacles of perturbation 
theories, it  cannot be rigorously justified. However, some heuristic arguments 
suggested below give it some weight. 

The four-wave approximation breaks down either at high wavenumbers - owing to 
the statistical self-affinity of the surface elevation field resulting in the growth of the 
local wave steepness ka, (Glazman & Weichman 1989) - or/and at high winds when 
the energy input exceeds a certain threshold. As ka, increases, the relative 
importance of H, and other high-order terms in Hint grows. Correspondingly, the 
number, v, of the resonantly interacting harmonics contributing to the collision 
integral must increase as well. Larraza (1987) offered an instructive analogy with 
phonons in solids (see also Klemens 1965): the number of phonons increases with 
increasing internal energy of the solid. The growth of v manifests itself via an 
intermittent occurrence of steep and breaking wavelets whose local nonlinearity, 
hence the number of Fourier terms required to represent a near-cusp shape, is very 
high. Since such events are statistically rare, the overall wave dynamics remain 
dominated by a weakly nonlinear inertial cascade. However, because the probability 
of such wavelets is finite (Glazman 1986; Glazman & Weichman 1989), a heuristic 
notion of the mean ‘effective’ value of v appears appropriate. Another manifestation 
of a gradual growth of the mean v is an accelerated (as compared to (1.3)) rate of 
spectral roll-off with an increasing wavenumber and frequency (Forristalll981). This 
roll-off has been represented (Glazman, Pihos & Ip  1988; Glazman & Weichman 
1989; Glazman & Srokosz 1991) by a ‘generalized spectrum’ 

S(w) = apg3( U/g)4b-6+4‘ (1.1) 

in which ,.u can change from zero to about 4, or even greater, as the sea maturity 
increases from that of poorly developed seas dominated by the Phillips spectrum 
(1.2) to that of moderately and well-developed seas dominated by the Zakharov- 
Filonenko (1.3) or Zakharov-Zaslavskii (2.10) spectra, respectively. However, 
such an ad hoc approach does not contribute to our understanding of the underlying 
physical mechanisms and of the characteristic wavenumbers/frequencies at which 
the accelerated roll-off should occur. 

The limiting rate of the spectral roll-off attained at  v+ co corresponds to the 
Phillips (1958) spectrum for a highly nonlinear wave field: 

S(w) = B p g ’ ~ - ~ ,  (1.2) 

where B is known &s the universal Phillips constant, and S(w) represents the spectral 
density of the wave potential energy per unit surface area. The quadruplet 
wave-wave interactions yield a relatively slow rate of the spectrum roll-off 
(Zakharov & Filonenko 1966) : 

S ( W )  = aq(pg3)~@w-4, (1.3) 

where aq is a Kolmogorov constant and Q is the (constant) surface density of the 
energy flux down the spectrum. The spectra (1.2) and (1.3) represent two limiting 
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cases and correspond to two dramatically different regimes of surface-height spatial 
variations (Glazman & Weichman 1989). The transition between these two regimes 
is of great intrinsic interest and has important implications for the interpretation of 
microwave remote sensing signatures of the ocean surface (Glazman 1990, 1991 ; 
Glazman & Srokosz 1991) and for air-sea interactions. 

2. The constant flux of energy and wave action: cascade models 
We start with a conservative inertial cascade when all the energy is supplied at low 

wavenumbers, k,. As usual (Frisch et al. 1978), we discretize the continuous spectrum 
S(w) by introducing the energy that is transferred to higher and higher wavenumbers 
k, (implying a cascade process whereby the lengthscale 1, = l /k,  is a fixed fraction 
of lnPl, for instance k, = 2,k,) by nonlinear wave-wave interactions between v 
resonant wavenumbers. Here, n labels all relevant quantities related to a given step 
in the cascade. On the nth step the energy is 

En = r+ ’S(w)dw (= l y E ( k ) d k ) .  
W n  

E(k)  is the spectral density of the wave potential energy related to the two- 
dimensional wavenumber spectrum P ( k ,  @) by 

E(k)  = F ( k ,  0)  kd@. L 
The wave amplitude a, on the nth step is found from 

En = pga2,. (2.2) 

Based on the scaling of the collision integral V, T(k) in the four-wave approximation, 
the characteristic time (the ‘turnover time’) for the energy exchange at  step n can 
be related to the other characteristic scales of the problem. Let us write this result 
in the form used by Larraza et al. (1990) : 

t i 1  % w,(k,a,)*. (2.3) 

Each additional Fourier component entering the interaction corresponds to a factor 
(k, an)2 to be included into the turnover time. The v-wave interaction (v 2 4) yields 
(Larraza 1987 ; Larraza et al. 1990) : 

ti’ E w,(k,a,)2(Y-2). (2.4) 

The rate of energy flux through the spectrum is related to the turnover time by 

Equations (2.5), (2.4) and (2.2) yield 

where an approximate dispersion relation 

w2, E k,g 



where the Kolmogorov constant, a, enables one to write (2.9) as an equality. For 
four-wave conservative interactions, the Kolmogorov constant can be estimated 
(Zakharov 1984) by calculating the collisional integral. For v = 4 and v+ 00 equation 
(2.9) reduces to (1.2) and (1.3), respectively. As v increases, the turnover time also 
increases and the influence of Q in (2.9) becomes ever less important. It disappears 
completely in the limit of v-t 00 (the Phillips spectrum), when the energy transfer to 
viscous scales is due largely to the breaking of sufficiently steep gravity waves rather 
than to the continuous inertial cascade. 

It is easy to verify that the same approach allows one to derive the 
Zakharov-Zaslavskii (1982) spectrum for the inverse cascade : 

S(w) = ap(pg3)Ww+. (2.10) 

Since this spectrum is based on the conservation of the wave action flux, P, equation 
(2.5) must be replaced with NJt ,  z P, where 

N,  = pgai w;’ (2.11) 

is the wave action. The Kolmogorov constant ap is, generally, different from that 
appearing in (1.3) and (2.9). Unlike the energy flux, P is conserved in the cascade only 
in the approximation of four-wave interactions. Hence, the equation N J t ,  x P can 
be applied only with v = 4. The inverse cascade will not be considered in this paper, 
hence the theory presented below is relevant to the high-frequency range dominated 
by the direct cascade. 

3. Continuous distribution in ( k , o )  of the wind input 
In the stationary case (W/at = 0), the kinetic equation for the frequency range 

well above the spectrum peak frequency can be written in the form (Phillips 1977) 

Vk’T(k) =p(k).  (3.1) 

Here, V,. T(k)  is the collision integral which represents the spectral density of the 
action flux due to nonlinear wave-wave interaction and p(k) is the input spectral flux 
of action. In  addition to the positive input, p+, from wind, this flux may contain a 
negative component, p-, due to the high-frequency dissipation. For simplicity, this 
component is not explicitly treated in the present work, and p(k) is assumed to be 
continuous and positive. The action balance for a given step of the cascade is found 
by integrating (3.1) over the corresponding wavenumber range : 

Vk T(k) dk = P,, where P, = l r p ( k )  dk. l: 
In  (3.2) and hereinafter, the bold symbols in v k  - T(k) andp(k) are replaced by regular 
ones to denote that the angular integration has been carried out as follows: 

V k T ( k )  lnVk’T(k)kd@.  
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The energy balance is given by 

The fact that the turnover time t ,  has been found through the scaling of the 
collision integral allows one to approximate the left-hand side of (3.2) as 

V, T(k)  dk x Nn/t , .  

Similarly, the left-hand side of (3.3) can be approximated as 

V, T(k) w dk x En/ t , .  s::” 
Employing (2.4), equations (3.3) and (3.5) yield 

wn(knan)2(v-2) x f i n ,  where Pn = PJN, (= &,/En).  

(3.4) 

(3.5) 

Here, Pn represents the ratio of the input flux, p(k), to the spectral density of the 
wave action, R(k), where the bar denotes averaging over the narrow spectral band 
between w, and Assuming slow variation of the quantities involved, we shall 
drop the bar and use P ( w )  in place of p,. As with (2.6), we can rewrite (3.6) in terms 
of S(w) and w by using the scaling relationships (2.2), (2.7) and (2.8) : 

S(w)  = g l / ( v - 2 ) ( p 9 3 )  o(9-6v) / (v -2) .  (3.7) 

The exact equality used here implies that a non-dimensional constant of 
proportionality similar to the Kolmogorov constant has been introduced into the 
interaction coefficient P. This constant emerges in the empirical equation (3.10) 
below as the ‘energy transfer coefficient’ C,. 

The question remains as to the appropriate value of v. The final, and most crucial, 
assumption of the present work, which is also consistent with the hypothesis of 
localness of the interaction process in (k, w)-space, is that (2.9) remains valid even if 
Q is a (sufficiently smooth) function of w. For such a non-conservative cascade, 
however, one must also accept that v is a function of frequency : v = v(w).  This leads 
one to seek v as an independent variable that makes (2.9) and (3.7) compatible. 

The local energy flux Q ( w )  through any given frequency w is obtained by 
integrating the spectral density of the energy input from its lowest boundary to a 
given frequency w (alternatively, to a given wavenumber k) : 

This flux can be tentatively broken down into two components: 

Q(0) = Qo+Q1(w), where Q1(w) = P(w)S(w)d~.  (3.9) lo 
Here Qo is the energy flux through wo and Q1(w) is the flux due to the Miles mechanism 
of wave generation. The wind-wave interaction coefficient P(o) (the ‘growth rate ’) 
(Miles 1962) rapidly decreases as w approaches wo from the right. The advantage of 
the breakdown (3.9) is that it  allows one to take into account additional factors 
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governing the wave spectrum. For instance, part of the total energy flux going to 
high frequencies (but generated at frequencies below wo)  may be due to an interaction 
of the wave field with ocean current gradients, or due to the Phillips mechanism of 
wave excitation by a moving disturbance of atmospheric pressure; these can be 
included into Q0. However, a much more important point is that ocean wave spectra 
usually contain an inverse cascade range whose extent depends on the wave age 
(associated with a shift of the spectral peak frequency wp to the left of the generation 
range wo) .  As a result, at frequencies below wo the spectrum does not immediately 
drop to zero but continues to increase with decreasing w .  The spectral shape in this 
range can be approximated by (2.10) or (2.9) where v0+4 as w + w B .  A t  w+wo the 
spectrum should match (3.7). Hence, the boundary condition for the second term in 
(3.9) can be taken as S(wo) = So,  where So is related to the ‘net direct flux ’ Qo passing 
through wo. A rigorous determination of Qo would require a complete description of 
spectral fluxes including the inverse cascade of the wave action, which is well beyond 
the scope of the present work. To simplify the matter, we shall present our end results 
( $ 5 )  for several characteristic values of a. Its variation is equivalent to the effect of 
varying So and/or Qo, which can be demonstrated by selecting appropriate scales for 
all variables. 

The commonly accepted form of p(o) consistent with the Miles theory is 

P ( w )  = ew#(w/o0) ,  where wo = g / U .  (3.10) 

Here, B = p,/p is the ratio of the air and water densities (B N and U is the 
characteristic wind velocity well above the surface. The limit of E + 0 corresponds to 
a conservative cascade, in which case (2.9) with v = const applies also for w > 0,. The 
mean number of resonantly interacting components at  w > wo is then found by 
solving (2.9) for v at w = wo, with So and Qo assumed to be known. Hence, the rate 
of spectral roll-off at high frequencies is determined in this case by the conditions at  
low frequencies. An a priori acceptance of v = 4 or v-t 00 is unwarranted. 

The non-dimensional function 4 in (3.10) increases monotonically, starting from 
about zero at w = wo. Based on observations of rather poorly developed seas, Snyder 
et al. (1981) proposed: 

(3.11) 

An empirical constant C, plays the role of the energy transfer coefficient (C, - 10-l). 
An alternative, quadratic form of # ( w )  believed to be appropriate for larger values 
of the wave age was proposed by Plant (1982). In the calculations below both forms 
will be tested. However, since we do not consider effects of the inverse cascade, the 
value of the transfer coefficient C, in our # ( w )  must differ from the measured values. 
Such a difference is because the actually observed wind input is shared by a variety 
of wave-wave and wave-current interaction mechanisms, whereas the input implied 
in the present work is entirely channelled towards high wavenumbers in the inertial 
cascade. 

4. Multi-wave interactions : an implicit solution 
Equations (2.9), (3.7) and (3.8) yield a closed system of one integral and two 

algebraic equations for S, Q and v. Let us carry out a preliminary analysis of these 
equations to evaluate the possible range of variation of the mean number v of the 
resonantly interacting components. To this end we shall scale the variables in such 
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FIQURE 1. The number, ~ ( o ) ,  of resonantly interacting harmonics versus the natural logarithm of 
the non-dimensional frequency, as given by ( 4 . 5 ~ )  for # ( w )  = C,(o- 1) : (a) a, = 0.1 and C, = 0.01 ; 
( 6 )  a, = 0.01 and C, = 0.01. 

a way as to eliminate Q and thus reduce the problem to a system of two algebraic 
equations. This is achieved by setting: 

w = (pg3/Q) i6  s(0) = (@/pg3)gfl ,  P = (pg3/Q)ib6. 

The relationship between D and the true frequency w will remain ambiguous until the 
dependence of Q on w is resolved. However, comparisons with the explicit solution 
obtained in the following section and in the Appendix show that (4.5) below bring out 
major features of the spectrum behaviour. In  a special case considered in the 
Appendix, the present approach yields explicit results which demonstrate that for 
most practical purposes, the frequency scale w* = (pg3/Q)i appearing in the above 
relationships can be identified with w,, = g/U.  

Hereinafter we shall use only the scaled quantities, although the tilde will be 
omitted. Equations (2.9) and (3.7) become 

Let us recall that (4.1) relates the shape of the wave spectrum (quantitied by u )  to 
the degree of nonlinearity (quantitied by k, an), and (4.2) provides for the continuity 
of the action flux through the spectrum, given a variable external input. In  
logarithmic form these equations are 

2 =A+52(8 -5~) / (~ -1 ) ,  Z =  -552+@/(~-2) (4.3) 

where 2 = I n s ,  52 = lnw, A = lna,  @ = Ins$. (4-4) 

(4 .54  

(4.5b) 

In  figures 1 and 2, (4.5a, b)  are illustrated for the case of $(w)  = C,(w-1) 
corresponding to (3.11). One shortcoming of the function # ( w )  proposed by Snyder 
et al. (1981) is the presence of a singularity in the vicinity of 1. The Phillips (1958) 
and Zakharov-Filonenko (1966) spectra are also plotted, for comparison. 

The (physically meaningful) solution of (4.3) appropriate for a < 1 takes the form 

u = (1/2A) (3A - 352 + @ - [ l M Q  + ( @ + A  - 352)’];), 
2 = $(A - 752 - @ - [ 12A52 + (@ + A  - 3Q)2]i). 
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FIQURE 2. -, The natural logarithm, 2, of the non-dimensional spectrum versus the natural 
logarithm of the non-dimensional frequency, as given by (4.5b), corresponding to figure 1 ; . . . . . , the 
Phillips spectrum 2 = A -552; ----, the Zakharov-Filonenko spectrum 2 = A-452. 

5. The explicit solution 

unambiguous relationships between original and scaled variables : 
Let us non-dimensionalize (2.9), (3.7) and (3.9) by selecting the following 

w = w o o ,  s = pg3w$, p = EwOoq5(L;), 

Q1 = ~ p g ~ w 0 ~ &  Qo = pg3wi3&,, 

where wo = g / U .  For w > wo this yields 

Again, the tilde over the variables is implied but not written. The boundary 
condition takes the form 

Considering (5.1) and (5.2) as a system of algebraic equations one can solve it with 
respect to v and Q1 to obtain an integral Volterra equation for S ( w ) .  Let us introduce 
‘the degree of saturation’ employed earlier by Phillips (1985), 

S(1) = aQpo-1). (5.4) 

Y = sw5,  (5.5) 

and use the functions CD = In (€4) and Y = In Y .  Then, the solution of (5.1) and (5.2) 
can be written in a convenient form: 

a-’eQl = exp ( Y + @) w-~cL-”, 

v = 2+@/Y.  

Differentiating (5.6) with respect to w and changing to the logarithmic variables, @, 
Y, A = In a and D = In w ,  we arrive ultimately at  the following differential equation 
for Y :  

(5.8) 
d Y  ul[A (d@/dS2) + 3 - (d@/dD)) !PI 
dD - P + A @  
_-  
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FIGURE 3. The number, v ( o ) ,  of resonantly interacting harmonics versus the natural logarithm of 
the non-dimensional frequency, for $ ( w )  = C , d ,  as based on the numerical solution of (6.9) with 
the boundary condition (5.9): (a) up = 0.1 and C, = 0.01 ; (6) a, = 0.01 and C, = 0.01. 

For a < 1 ,  the term a-’+” appearing in the numerator can be neglected. The 
boundary condition for Y follows from (5.4) in which, without loss of generality, one 
can set Q0 = 1 .  Therefore, 

Obtaining a numerical solution for any choice of @(a) presents no difficulty. The 
calculation for the case of @(a) based on (3.11) yields plots virtually identical to 
figure 1 and 2 in which w* is replaced by wo. In figure 3 we illustrate v (w)  for the case 
of #(o) = Gqw2. The corresponding spectrum X(w) is close to that shown in figure 2. 
In the next section and in the Appendix this case is also studied analytically for 
special values of external parameters. 

Yo = A .  (5.9) 

6. Special cases 
The linear dependence of 4 on w was discovered by Snyder et al. (1981) for rather 

poorly developed seas characterized by a strong wind-wave coupling. A simple 
analytical solution for this situation can be obtained by approximating 

4 = Cqw,  hence @(D) = E + D ,  (6.1) 

where E = ln(sCq). Then, (5.8) reduces to 

d Y  Y ( A + 2 Y )  
dfi! - ! P + A ( E + Q ) ‘  
_-  

Field observations (Donelan, Hamilton & Hui 1985) indicate that a decreases with 
increasing wave age (alternatively, with the non-dimensional wind fetch). Equation 
(6 .2)  can be solved using a Taylor series expansion: 

(6 .3)  Y(D) = Yo + a, D +a2 D2 + a3Q3. .  . . 
Selecting Yo = A ,  the first three coefficients a,, are found to be 

6(2A --E) ( A  - 2E) 
(6.4) ( A  + E)’ 

a3 = 
3A(A-2E)  

( A  + E)3  ’ 
a2 = - 3A 

a, = - 
A + E ’  
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It can be shown that for n > 2, all a, contain the factor (A - 2E). The corresponding 
dimensionless spectrum can now be written in an instructive form: 

y = = 3A/[4(A+E)] = ln~~/ ln[ (aeC, )~] ,  6 ( w )  x - (  a,+a,lnw+ ...) lnw. 
(6.6) 

The parameter y appearing in the exponent of (6.5) has a simple geometrical 
interpretation (Glazman et al. 1988; Glazman & Weichman 1989) based on the fact 
that the Hausdorff (fractal) dimension of a Gaussian random surface characterized 
by the wavenumber spectrum k-4+2fi is D ,  = 2+p. (The quantity y is sometimes 
called the fractal codimension, although a more standard definition of the 
codimension is: c = 3-0,  where 3 is the dimension of the embedding space.). The 
effect of 6 ( w )  on the spectrum shape is to increase the rate of spectrum roll-off above 
that given by w - 5 + 4 P ,  However, owing to the smallness of a, with n 2 2, this effect 
becomes noticeable only for large w.  In  terms of the original, dimensional, variables 
the spectrum takes the form 

,"(w) = a p g 3 (  U / g ) 4 ~ w - 5 + 4 ~ - a ( w u l g ) .  (6.7) 

Apparently, at  a given frequency w ,  the effect of 6(w/uo)  becomes the more 
appreciable, the greater the wind. This form of the wave spectrum -with the wave- 
age-dependent p and a-has been successfully employed for the explanation of 
various wave-age-related biases in satellite remote sensing measurements (e.g. 
Glazman 1990; Glazman & Srokosz 1991). However, in the previous work, effects of 
the wave age have been quantified using ad hoc principles rather than analysis of 
wave dynamics. 

Another case of special interest is the quadratic law 

qi = C,w2, hence @(Q) = E+2Q (6.8) 

which agrees better with observations at higher degrees of wave development (Plant 
1982). Equation (5.8) takes the form 

d Y  Y(2,4+!?9 - 
d0- w"+A(E+29)' 

It is easy to check that this equation is satisfied by a function 

Y(Q) =$E+Q (6.10) 

which corresponds to S(w) = (€cq)Jw-4. (6.11) 

According to (4. l),  this spectrum is pertinent to four-wave interactions. Indeed, 
substituting (6.10) and (6.8) into (5.7) confirms that v = 4. Comparing (6.10) with 
(5.9) we see that A = 1s. In  other words, the regime of four-wave interactions is 
preserved if the energy flux Qo arriving at wo from the low-frequency range does not 
exceed a certain, rather small, magnitude. In the Appendix this regime is explained 
in greater detail. In terms of the dimensional variables this spectrum is given by 

S(0 )  = ( € C q ) $ g 3 ( u / g )  w-4. (6.12) 

Therefore, the Zakharov-Filonenko spectrum, which was originally derived on the 
assumption of a purely conservative cascade, remains valid in a special non- 
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conservative situation. Earlier, Phillips ( 1985) arrived a t  the same conclusion, 
although v = 4 was assumed a priori. 

The analysis of (2.9), (3.7) and (3.9) offered above is rather preliminary. A deeper 
understanding of these equations requires a better knowledge of the parameters a,  $ 
and C, treated here as external factors which depend on the wave age in a yet 
unspecified manner. Such knowledge is presently very poor. 

This work was performed at  the Jet  Propulsion Laboratory, California Institute of 
Technology. The author thanks Professor Vladimir E. Zakharov for fruitful 
discussions during his visit to the Jet Propulsion Laboratory under the US-USSR 
Joint Working Group 8 agreement. Financial support was provided by the Office of 
Naval Research and by the National Aeronautics and Space Administration. 

Appendix 
Employing the approach presented in $4 one can obtain an explicit solution of 

(2.9), (3.7) and (3.9) for the special case $(w)  - w2,  Although this case was treated in 
$6 based on an approximate version of (5 .8) ,  its re-examination with the exact 
equations of $4 is of intrinsic interest. (In this section all equations are written in 
terms of actual dimensional variables.) 

(A 1 )  

generates two formal solutions to (4.3). The first solution is v1 = 4 and 2, = A -452. 
The second solution, v2 = A - Q / A  and 2, = - 2A - 51R, would lead us to the Phillips 
spectrum. This solution is not considered in the present paper. In the dimensional 
variables the first solution takes the form of (1.3) where Q remains an unknown 
function of the frequency. Substituting this formal result into (3.9) and dif- 
ferentiating the resultant integral equation over w we arrive at  a differential equation 
for Q(w): 

The precise dimensional form of p(w)  equivalent to (A 1) ,  accounting for the scaling 
relationships of $4, is given by 

Note that the function 
@(52) = 2(A +52) 

dQ(w)/dw = a(pg3)ip(o) [Q(w)]h~-~. (A 2 )  

p(w)  = a2w(w/o, )2 ,  where w* = (pg3/Q)i. (A 3) 

Evidently, our choice of @(Q) is not quite equivalent to the quadratic law for $ ( w )  
because Q = Q(w). The quadratic law would result in 

P ( w )  = ECp w(w/oo)? (A 4) 

However, it is easy to show that replacing w* with wo in (A 3) leads to the desired 
result with sufficient accuracy. Let us insert (A 3) into (A 2) and integrate from wo 
to  o. This yields 

Since a 6 1, the last approximation remains accurate even at  large w .  Therefore, for 
approximate calculations of the explicit dependence of S on w starting from ( 4 4 ,  the 
variation of the energy flux in w* can be discarded. Finally, selecting a2 = EC* makes 
(A 1 )  fully equivalent to (A 4), and a is indeed sufficiently small (for C,  N 

a - 
Apparently, having decreased the Kolmogorov constant (alternatively, the flux Q0 

arriving from the low-frequency range) to a certain - rather small - value, we have 

Q(4 = ( ~ / w ~ ) ~ ~ Q ~  Qo. (A 5 )  
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achieved the regime under which the local spectral energy at  any w > w,, satisfies the 
criterion of weak nonlinear interactions. The corresponding energy level is 
determined by (3.6) in which v = 4. 

The regime resulting in (6.10) is likely to be realized at high degrees of sea maturity 
-when the inverse cascade is well developed and the advective flow of the wave 
energy is also large due to the large group velocity of long waves. When the wave age 
C,/U > 1,  the wind input is partitioned between the direct and the inverse cascades. 
As a result, one can anticipate that the direct flux remains relatively small even at 
a high wind speed, so that regime (6.12) can be realized. 
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